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Abstract: Image degradation due to wavefront aberrations can be corrected with adaptive optics
(AO). In a typical AO configuration, the aberrations are measured directly using a Shack-Hartmann
wavefront sensor and corrected with a deformable mirror in order to attain diffraction limited
performance for the main imaging system. Wavefront sensor-less adaptive optics (SAO) uses the
image information directly to determine the aberrations and provide guidance for shaping the
deformable mirror, often iteratively. In this report, we present a Deep Reinforcement Learning
(DRL) approach for SAO correction using a custom-built fluorescence confocal scanning laser
microscope. The experimental results demonstrate the improved performance of the DRL
approach relative to a Zernike Mode Hill Climbing algorithm for SAO.
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1. Introduction

Adaptive optics (AO), originally developed for earth-based astronomical imaging, is increasingly
finding applications in microscopy. The impact of AO for vision science is described in a recent
review article [1]. Specialized confocal bio-microscopes used for in vivo imaging of the retina
are called confocal Scanning Laser Ophthalmoscopes (cSLO), which uses the refractive elements
of the eye (cornea and intraocular lens) as the objective lens. The resolution attainable with
cSLO ultimately depends on the optical quality of the eye.

In a typical AO system, a deformable mirror (DM) is used to introduce counter-aberrations and
flatten the wavefront to a constant phase in order to restore diffraction limited image quality. This
is generally done by measuring the wavefront, for example with a Shack-Hartmann wavefront
sensor (SH-WFS) [2], and using control algorithms to shape a DM to correct for the aberrations.

Wavefront sensors unfortunately do not work in all scenarios; for example, a sample with
multiple reflecting/scattering surfaces could confound accurate wavefront measurement. An
application where SH-WFS is challenging is small animal (e.g. mouse) retinal imaging [3–5].
In the mouse, the retina is thick relative to the length of the eye, creating multiple reflections
of different aberrations and confusing wavefront sensors [6]. Wavefront sensors also require
additional calibration for non-common path aberrations.

One approach to overcome the challenges of wavefront sensors is to use Sensor-less Adaptive
Optics (SAO), in which the signal or image may be used to directly control the DM. SAO methods
are based on the principle that changing the wavefront with a DM has some relationship with the
chosen image quality metric and can be maximized. A challenge with this approach to aberration
correction is that the wavefront itself is only indirectly measured by its effect on the image
and an image quality metric must be created. This can also be regarded as a benefit where the
optimization is done on the image itself and seeks to optimize the quality, with the assumption
that a representative and desired image quality metric can be accurately modeled. SAO is also
able to correct for non-common path aberrations as the control system uses the final signal as its
input.
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For SAO, optimization methods such as a Zernike Mode Hill Climbing (ZMHC) [7] exploit
the convex interaction of a single-mode aberration to the image quality metric around the point
of correction; in essence, a DM is used to counter-aberrate one mode by stepping through
several coefficient values for this mode and plotting it against the measured image quality metric.
Around the true correction, the relation is ideally parabolic and each mode can be isolated
and independently optimized [8]. This assumes that each mode has an independent effect on
the image quality, but in practice several recursive optimizations must be done to properly
correct the aberration because the modes interact through the merit function [9]. Examples of
extrema-seeking SAO methods applied to retinal imaging include improvements to the coordinate
search approach for ZMHC [10] and the use of gradient descent [11–13].

Multi-dimensional function-fitting can also be used to create a virtual representation of
the Zernike space, such as using the Data-based Online Nonlinear Extremum-seeker (DONE)
algorithm [14,15]. DONE anneals the influence of measurements over time so older measurements
do not influence the fit as much as newer ones, which can be desirable due to target motion or
blinking.

Some of the difficulties of SAO include the time to correct for aberrations and reliance on
user-defined assumptions and models for behaviours of the aberrations to image quality (e.g.
parabolic relationship). An image quality metric must also be defined that is dependent on the
application and desired result.

The iterative approaches to SAO aberration correction considered above represent only a
part of the field. Other approaches to SAO have been described in the Literature that do not
require iterations. For example, phase stable Optical Coherence Tomography (OCT) images
contain phase information that may be used to directly extract the wavefront aberrations using
digital or computational AO methods [16,17] to be applied to a DM [18]. These approaches
generally require a static sample or high-speed OCT acquisition in order to meet the phase
stability requirement and may not be directly applicable to applications such as fluorescence
confocal imaging where the phase information is lacking.

Deep Neural Networks (DNN) have also been applied to SAO approaches. In [19,20] a
DNN was used to estimate the Zernike mode aberrations from a single measurement of the
PSF in a non-imaging configuration. Deep Reinforcement Learning (DRL) has shown promise
in real-world systems control and for complex optimization spaces, such as video games or
chess [21–23]. Generalized deep learning control models have been shown to accurately correct
aberrations in SAO [24]. Using DRL, a Deep Deterministic Policy Gradient (DDPG) was able
to improve correction speeds by a factor of ∼9 in comparison to a stochastic parallel-gradient
descent algorithm by using a phase screen to generate aberrations and an image sharpness metric
calculated on the PSF [25]. While using the PSF is compatible with confocal imaging applications
in thin samples, it may not be directly compatible with OCT imaging in thick samples.

The iterative SAO methods that are described in this report use a sharpness-based merit
function that is calculated on the image. This approach is readily used with either fluorescence
images or OCT images and, when combined with an appropriate imaging system and sample,
permits depth-resolved aberration correction based on the features of interest. Building on the
work done for algorithmic and model-based approaches to SAO optimization, DRL can also
be combined with SAO when framed as a control problem. In order to apply DRL to iterative
models of SAO, the action space can be defined as the coefficients of the selected modes to be
corrected, and the observations and rewards defined as the image quality metric.

A brief outline of DRL is provided in the description of the methods. The DRL was trained in
silico and then transferred to a prototype confocal fluorescent microscope for proof-of-concept
demonstration. The iterative image-based SAO aberration correction performance using DRL
was compared against a coordinate-search approach using a static phantom sample.
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2. Methods

SAO methods are essentially an optimization of an image-based merit function. To overcome the
limitations of algorithmic control approaches, a machine learning approach can be taken. Instead
of using user-defined models as our optimization policy, Reinforcement Learning (RL) can be
used where a computer automatically derives the best-fit model. For applications in real-world
control, RL can be wrapped around a DNN to create DRL. This is especially useful in problems
without labeled data where the observation, action, or optimization space is too unwieldy or
ill-defined for a more typical DNN approach. DRL has the added benefit of environment
exploration as it is not only fed with a state-reward pair but also decides on its actions. This
essentially enables it to experiment and test hypotheses in its environment. Hence, DRL has
significant potential for integration with SAO as a general control method. A brief introduction
to RL and the concept of state-action pairs is included in Supplement 1 Section 1.

Where conventional DNNs create a complex lookup table and RL a learned policy, DRL
benefits from a table of learned policies which are fine-tuned by gradient descent. This enables
DRL to learn a policy-based method of optimization for complex tasks in hidden representations.
Downfalls of DRL are its inherent short-sightedness that can be caused by sparse rewards and
inability to resolve temporal data (for example, resolving the direction of motion of a moving
object from a still picture). Temporal-resolution is improved by including a replay or experience
buffer where every experience and sample batches are stored by the inclusion of preceding
observations with the current one.

Policy gradients are a policy-based method that enable the action space to be continuous and
compensate for the limitations in alternative value-based methods (such as Q-learning). DDPG
[23] is a policy gradient method that is a form of Temporal Difference (TD) Learning that uses a
separate network for the actor and critic to create a continuous action space. The DDPG actor
decides the policy, which subsequently takes the action, and a critic evaluates the policy based on
the TD error [26]. The schematic for the DDPG agent used in this report is shown in Fig. 1 [27].

Fig. 1. DDPG schematic used in this report displaying actor-critic networks and their
interaction via the policy gradient. A derivation of the policy gradient is provided in
Supplement 1 Section 1.

To circumvent challenges with convergence in DRL, DDPG uses the same methods of
experience replays and separate target networks as in Q-learning, but still falters with sparse
rewards and local maxima problems. One method to correct for these challenges is to induce
exploration in the agent by adding noise to the output action, essentially perturbing it and forcing
it to take unchosen actions. An even more effective method is to induce noise in the parameter
space, perturbing the decision-making process instead of the decision [28].

Python was used both in silico and in situ for the Machine Learning aspects of this project.
The well-known library Keras with TensorFlow backend was used for the network architectures.
Keras’ DRL derivative, Keras-RL, was used for the DRL (DDPG) agent wrapper and logistics.

https://doi.org/10.6084/m9.figshare.14887860
https://doi.org/10.6084/m9.figshare.14887860
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The actor and critic networks were both simple fully dense nets with equivalent hidden layer
structures as shown in Table 1 for 5 modes. Motivation for the simple architecture was its ease of
use while prototyping solutions to a novel problem in order to eliminate simultaneous need of
hyperparameter optimization and architecture exploration.

Table 1. Actor and Critic network architectures. #modes refers to the number of
Zernike modes being corrected

Actor Network Critic Network

Layer Layer Dimension Activation Layer Dimension Activation

Input
Observation Space
(#modes*2+ 1)*(#modes+2)

Observation
Space+Action Space

Dense 500 ReLU 500 ReLU

Dense 1000 ReLU 1000 ReLU

Dense 1000 ReLU 1000 ReLU

Dense 1000 ReLU 1000 ReLU

Dense 1000 ReLU 1000 ReLU

Dense 500 ReLU 500 ReLU

Dense 300 ReLU 300 ReLU

Dense 200 ReLU 200 ReLU

Dense Output
Action Space
(#modes) tanh 1 Linear

Testing hyperparameters were set at learning rate of 1E
−5 with Adam optimizer and Mean

Absolute Error loss for both networks. Rectified Linear Unit (ReLU) hidden layer activations
with a tanh output activation were used for the actor network (to mimic the roughly zero-centered
characteristics of Zernike mode coefficients) and the commonly used linear output activation was
used for the critic network.

The agent’s environment was self-programmed following OpenAI’s Gym environment structure
[29] where observations, actions, rewards, and reset conditions must be defined. The action
space was defined as the coefficients of the selected Zernike modes while the observations and
rewards were defined as the image quality metric. Initialization of the agent was coded into the
environment as well as defining each step, which includes the agent taking an action, observing
it and its associated reward, and updating its policy gradient. For consistency of terminology
between DRL and the ZMHC methods, the observations are also referred to as steps.

Crafting a proper reward function is crucial for DRL convergence and behaviour, and thus also
crucial for an SAO method to optimize the defined image quality metric. An example reward
function is the image intensity squared and summed, assuming that intensity of the signal is
maximum when the aberrations are corrected. Although normalizing the image quality metric
may be desirable, zeroes can be introduced in denominators when dealing with zero-intensity
signals, leading to artificially large merit function values that can confuse both SAO and DRL
optimizations. For DRL, however, some normalization should be done to account for differing
targets. Normalization using the maximum merit found within a set amount of training episodes
was used instead of normalizing each image based solely on its own intensities.

2.1. Environment definition - observations

The observations were split into two categories – initial and dynamic. The initial observations
included all modes’ coefficients set to zero as well as the combination of each isolated mode’s
bounds – this contributes a space of #modes · 2 + 1 initial observations. These measurements can
be considered to provide DeepMODAL with an initial low order fit to the observation space. The
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dynamic observations were continuously updated and served as “memory” of the most recent
actions and rewards. These permitted DeepMODAL to refine the model of the optimization space
and also provided updates for changes over time. Each observation included the combination
of each mode’s coefficient and the associated reward for that combination, leading to a total
observation space of (#modes · 2 + 1) · (#modes + 2). The quantity of dynamic observations was
made a multiple of the number of modes but can be user-defined.

2.2. Environment definition - actions, rewards, and reset conditions

The action space included the entire continuous range of coefficients for the selected modes.
Zernike mode coefficients were used due to simplicity and native support of the DMs for
interpreting Zernike polynomials to actuator voltages.

The reward was based on the image quality metric defined by the image intensity squared and
summed. As normalization is desirable to increase robustness to different imaging targets, signal
powers, and imaging modalities, the rewards were normalized to a maximum image intensity
metric in a defined number of steps. Due to noise influences and random fluctuations, non-linear
normalizations were used to increase the difference between values around the maximum and
other values. Normalization was done between [-1, 1].

Reset conditions are an important aspect of training where the conditions for starting a new
episode are defined. Reset conditions should take into consideration that application using live
targets will include motion, blinking, and artifacts. For training, the quicker of either 800 steps
or reaching within 5% of the max value for more than 50 steps was taken as the reset condition.
For implementation using live targets, constant recalibration via repeating initial observations
would be detrimental to time and limit the effectiveness of the system – such applications should
refrain from reset conditions unless the agent is unable to find a correction.

Several models for the DDPG network were rapidly prototyped and evaluated in silico as
described in Section 2.3. Training of the final model was done using the physical system on a
phantom for 200,000 episodes with the aberrating DM (as described in Section 3) generating the
low order modes of defocus, horizontal coma, vertical trefoil, vertical astigmatism, and oblique
astigmatism for a total of 5 aberrations in range of [-2.5, 2.5] µm rms.

2.3. In silico training environment

For prototyping, a simulation was used to model the system and aberration interactions as training
in situ is time-limited by control of the DM actuators. During experimentation, training for
200,000 episodes took 4 hours in silico versus 20 hours in situ. To decrease overall training
time, models can be first trained in silico then used in transfer learning or refined in situ. Our
experiments showed that models trained in silico performed as well as those trained in situ.

The in silico model simulated realistic fluorescence imaging using the small animal cSLO
imaging system used during validation as described in Section 3. A noise profile was defined as
Poisson and additive half-normal noise due to photon and detector noises, respectively.

Wavefronts were calculated using the sum of Zernike modes given by their polynomial
expansions [30,31]. The PSFs for the aberrating and correcting DMs were then superimposed
and convolved with an image to derive the final aberrated image. The algorithmic equations can
be found in Supplement 1 Section 2.

3. Imaging system

Training was done using a Dual-DM imaging system as schematically presented in Fig. 2. This
system was a modification of a configuration used for imaging the mouse retina with SAO SLO
[32] and OCT [33]. The SAO image-guided aberration corrections reported were performed on
the fluorescence images only. Depth-resolved en face OCT images were subsequently acquired to
demonstrate the multimodality capabilities of the system. The two DMs were optically conjugated

https://doi.org/10.6084/m9.figshare.14887860
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to each other using relay lenses to match the diameter of each mirror. In these experiments, the
sample was a phantom (lens cleaning tissue with fluorescent marker) and the DM-97 from AlpAO
(DMAlpAO) was used to create the aberrations. In the early proof of concept experiments, a
simple VariOptics Variable Focus Lens was used in this place, generating one mode of aberration
(defocus). The PTT-111 from IrisAO (DMIrisAO) was controlled by DeepMODAL or the ZMHC
method to correct the aberrations. A SH-WFS was placed behind a partially silvered mirror in a
plane optically conjugated to the DMs. The two DMs played similar roles to acquire comparative
results using the ZMHC approach. The DMIrisAO served as the correcting element and the
DMAlpAO served the purpose of creating a range of aberrations, simulating the effects of differing
aberration combinations. In a real application, this DM would be removed and the intrinsic
aberrations arising from the sample would be corrected.

Fig. 2. Schematic of system.

4. Results

A DDPG framework, which was named Deep Multimodal Optimization by Direct Aberration
Learning (DeepMODAL), was used as the DRL agent. The DDPG aberration-correction
implementation was demonstrated for the five low-order Zernike modes of defocus, horizontal
coma, vertical trefoil, vertical astigmatism, and oblique astigmatism with a continuous range of
coefficients.

4.1. DeepMODAL - DDPG training

DDPG poses greater complexities and is prone to non-convergence and over-fitting due to sparse
rewards on the continuous action space spectrum. The addition of parameter-space Gaussian
white noise to perturb the decision-making process of the DDPG during training was used to
‘force’ exploration which was subsequently annealed, leading to convergence of an absolute
maximal policy. Visualization of the training process and annealment of noise resulting in more
consistent and accurate decision-making is displayed in Fig. 3.
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Fig. 3. Progression of agent training displaying high variation in the beginning due to
noise-addition action-perturbation which is annealed as training progresses leading to
high-accuracy convergence. Black vertical lines represent an aberration corrected, defined
by an absolute-relative reward metric > .95, for at least 50 steps. Each dot represents a single
time step.

4.2. DeepMODAL - DDPG testing

DeepMODAL was successfully able to correct for the 5 Zernike modes and noticeably improved
image quality in less steps than a ZMHC approach. Figure 4 displays pre- and post-corrections
using the DDPG agent. To check for robustness to artifacts, the sample was shifted vertically,
longitudinally, and intermittent blocking of the optical path was introduced to mimic blinking.
The agent was still able to correct given these realistic motions of a live imaging target due to
movement and blinking, as visually and quantifiably shown.

Fig. 4. Tissue phantom SLO aberrated by defocus, horizontal coma, vertical trefoil, vertical
astigmatism, and oblique astigmatism (top) and corrected by DeepMODAL (bottom). The
first two columns represent simultaneous images taken with a multimodal system whereas
the third column shows another Fluorescence-SLO (F-SLO) acquisition of a sample that was
physically shifted vertically, longitudinally, and blocked (mimicked blinking) during testing.

DeepMODAL optimizes in significantly less steps than ZMHC as shown in Fig. 5 and Fig. 6
(34 vs. 231 and 25 vs. 154 steps, respectively), and reaches a similar or better image quality
metric even when optimizing for fewer modes. Figure 5 shows a representative result for the test
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case in which the aberrations generated by DMAlpAO were within DeepMODAL’s training bounds.
After 34 initial+ dynamic steps, or observations, DeepMODAL reached an image quality merit
function value that was slightly higher than the ZMHC result after optimizing 7 modes over three
iterations, totaling 231 steps (7 modes · 11 steps · 3 iterations).

Fig. 5. Comparison of DeepMODAL (top) to ZMHC for 5 modes (middle) and 7
modes (bottom) with associated image quality metric. DeepMODAL’s step count includes
initial+ dynamic steps.

Fig. 6. Comparison for coefficient values outside of DeepMODAL’s training bounds
for DeepMODAL (top) to ZMHC for 7 modes (bottom) with associated image quality
metric. DeepMODAL’s step count includes initial+ dynamic steps. Note: ZMHC eventually
reaches a higher metric, but this is likely due to ZMHC correcting for more modes than
DeepMODAL.

The middle row of Fig. 5 shows the images acquired with the results of the ZMHC method
applied to the same 5 Zernike modes that DeepMODAL optimized by setting the coefficients
for vertical coma and oblique trefoil to zero. After the second and third iterations of the ZMHC
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method, the value of the merit function calculated on the 5-mode images was significantly lower;
this is due to the interaction of the modes during the ZMHC search [8,9] and demonstrates the
ability for DeepMODAL to model the optimization function in a higher-dimensional space.

Figure 6 tests the ability of DeepMODAL to extrapolate by adding an amount of vertical
astigmatism that was outside the training bounds. The ability to correct for extrapolated
coefficients is significant as it suggests DeepMODAL creates an accurate inner representation
of the aberration-reward relationship and optimizes it consistently, instead of merely creating a
lookup table based on its training cases.

The ZMHC algorithm was run for 11 steps over 7 modes, leading to increments of 77 steps
per iteration. Due to cross-talk of modes, ZMHC required multiple iterations over all modes
[8,9]. It is important to note that in Fig. 6 the ZMHC was able to achieve an absolute higher
image quality metric, though this may be due to its correction of higher-order Zernike modes to
which DeepMODAL was not given access. Even with the smaller number of modes controlled,
DeepMODAL can still perform similarly through optimization of the lower order modes. In
either case, DeepMODAL outperforms ZMHC by a factor of 6-7 in terms of discrete steps with
the added benefit of continuously-updating in the case of motion, whereas ZMHC would require
new calibrations in the case of motion or artifacts.

4.3. DeepMODAL’s decision-making process visualized

Meta-analyses of the testing progression reveal how DeepMODAL corrects for aberrations
using SAO. Figure 7 shows a representative coefficient test progression during the dynamic
steps phase. The first dynamic steps tend toward the ground truth and thereafter vary slightly
around it. The amount of variance or exploration the agent does around the peak value can
be tuned. Overly-aggressive variation of modal coefficients is undesirable when imaging live
targets and attempting to image; however, slight exploration can improve the accuracy of finding
a global maximum and makes the agent more robust to movement and artifacts. A realistic
implementation would allow the agent to explore within reasonable bounds and “freeze” the

Fig. 7. Test case from Fig. 8 displaying progression of DeepMODAL’s correction coefficients
for 5 Zernike modes during the dynamic phase with associated ground truth and residual
for standard implementation (a) and with increased exploration (b) as set by addition of
parameter-space noise with amount being user-defined. The horizontal axes represent the
dynamic step counts up to 75 steps. The vertical axes represent the Zernike mode coefficients
in range [-1, 1] µm rms. The residual is represented in red in absolute terms from the top,
i.e. 1 − |Residual|.
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applied correcting aberrations based on the highest-found metric during image acquisition, where
the agent’s exploration could be temporarily paused and allowed to explore only while acquisition
is not taking place. Another option is to cycle between exploration and acquisition based on
time constraints and imaging protocols. Visualization of how increasing exploration effects
the decision-making process of DeepMODAL is displayed in comparison of Fig. 7(a) (normal)
versus Fig. 7(b) (increased exploration).

Figure 8 shows the images acquired during the representative test progression of DeepMODAL’s
initial and dynamic steps where the first image (I01) represents the pure intrinsically-aberrated
image when the correcting DM (DMIrisAO) is flat. The following initial steps represent the bounds
of each mode individually isolated. The dynamic steps represent the exploration performed
by the agent and the eventual convergence on a correcting solution. As can be seen, the agent
will sometimes reach a high value and then a lower one. This is due to the agent probing the
surrounding coefficient space, which is better visualized in Fig. 7.

Figure 9 displays the wavefront measured using a SH-WFS while Fig. 10 displays the associated
Zernike mode decomposition during DeepMODAL’s optimization as presented in Fig. 8 and
Fig. 7(a). It can be seen that the wavefront flattens out, but slight deviations are expected due to
SH-WFSs measuring non-common path aberrations due to their position laying outside the direct
path of the camera and the target. The location of the SH-WFS is shown in the system schematic
in Fig. 2.
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Fig. 8. Visualization of test case from Fig. 7(a) displaying progression of DeepMODAL’s
correction of a tissue phantom with associated image quality metric. I01 represents a flat
correcting DM, i.e. the aberrated image, followed by the bounds of each of the 5 Zernike
modes. D## represents the exploration and convergence of the agent.
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Fig. 9. Wavefront Sensor analysis of the test case from Fig. 8 and Fig. 7(a) displaying planar
wavefront progression with associated image quality metric. I01 represents a flat correcting
DM, i.e. the true aberration, followed by the addition of the bounds of each of the 5 Zernike
modes. D## represents the exploration and convergence of the agent.
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Fig. 10. Wavefront Sensor analysis of the test case from Fig. 8 and Fig. 7(a) displaying
Zernike mode decomposition progression with associated image quality metric. The phase
difference ranges from .3 to .13 λ. I01 represents a flat correcting DM, i.e. the true aberration,
followed by the addition of the bounds of each of the 5 Zernike modes. D## represents the
exploration and convergence of the agent.
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5. Discussion

By using Deep Reinforcement Learning to develop our SAO control algorithm, a computer-
generated model was created to represent the relationship between observations and desired
actions. In the case of SAO, our observations are a set of the most recent image quality metrics
and our actions are the set of Zernike polynomial coefficients used to control the correcting
DM. While SAO can be used to overcome non-common path aberration corrections and further
optimize the image quality metric directly, its shortcomings lie in the time needed for correction as
well as being limited by the accuracy of the correcting model. Using DRL seeks to overcome these
problems by repeatedly refining a model until it accurately predicts the state-action relationship.

There are multiple policies that can be used in generating a model using DRL, one of the
simplest being an extension of classical Q-learning to Deep Q Networks (DQN) [22]. DQNs,
however, are limited by discrete action spaces which leads to actor-critic network policies
such as DDPG as a possible solution to complex aberration-correction for large optimization
spaces. DDPG features a continuous action space and thus wouldn’t require high-dimensionality
combinations to effectively cover the solution space. A DDPG was ultimately used in this project
with fully-dense nets for both the actor and critic networks.

The agent can also be trained in silico to accelerate training and exploit greater processing power.
The simulation proved to accurately model the problem; direct transfer of simulation-trained (in
silico) models performed as well as real-world system trained models on real imaging targets
without the need for further training. Simulation has a significant time overhead benefit which
results in faster prototyping and training, as well as being able to exploit greater computational
power, whereas a real-world system is generally limited by control and reaction times of the
optical components (DMs, DAQ).

The success of transferring the results of the in silico training to the real-world case was
partially due to the use of a sharpness based merit function to guide the DDPG. Our experiments
showed that DeepMODAL was able to correct for different combinations of aberrations on
different imaging targets. We speculate that DeepMODAL will be generalizable to other samples
so long as appropriate imaging conditions are maintained. Artifacts in the images, such as
spurious light, field of view larger than the isoplanatic patch, or low signal to noise ratio, would
degrade DeepMODAL’s performance.

Transfer-learning of the model is also possible to expedite training which may be necessary
with increased complexity such as including a greater number of modes for correction. In future
work, we anticipate increasing the number of modes corrected by DeepMODAL to 18 in order
to match our previous work with the ZMHC approach. In such a case, more extensive training
can be initially done in silico and refined on a real-world system. Such training approaches may
also be necessary for complex architectures or agents which may require lengthy training. The
transfer learning approaches may also be useful for future applications where DeepMODAL can
learn to account for parameters such as DM hysteresis.

Architectures natively integrating time-series analysis may be necessary for an increased
number of modes, as scaling of purely Dense networks may lead to an undesirable number of
hidden connections which can confound and lengthen the learning process. Recurrent blocks such
as Long Short-Term Memory (LSTM) [34] were tested and showed initial success on 5 and 7-mode
correction using a single 128-dimension block, with an added benefit of training convergence in
less steps. The large potential space to scale these Recurrent blocks and the severely reduced
complexity further implies that Recurrent Neural Networks may be more applicable for scaling
of DeepMODAL. Proper integration of memory within the network architecture instead of inputs
can also forego or severely limit the dynamic step inputs, making the inputs a function of #modes
instead of #modes2, further reducing complexity.
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6. Conclusion

This report demonstrated that the implementation of DeepMODAL using a DDPG can effectively
correct for the 5 lower-order Zernike modes of defocus, horizontal coma, vertical trefoil, vertical
astigmatism, and oblique astigmatism with 6-7 times less steps than a traditional hill-climbing
coordinate search, ZMHC. Meta-analyses show how the agent probes around its initial guess
and refines it to maximize a set image quality metric. Corrections are done by control of a
Deformable Mirror employing Zernike mode coefficients, using only the image signal as input
in a method known as Sensor-less Adaptive Optics. The agent is further able to explore the
coefficient-metric space and continuously update, making it robust to real-world perturbations
such as target movement, artifacts, and noise. The amount of exploration or variance from an
optimal solution can also be user-set. Wavefront analysis also demonstrated that DeepMODAL
effectively flattens the wavefront, but by direct control of every mode simultaneously as opposed
to isolated modes as in ZMHC.
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